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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1382

STEADY PROPERLY-BANKED TURNS OF
TURBOJET-PROPELLED ATRPLANES*

By Angelo Miele
SUMMARY

The problem of a jet-propelled airplane held in a steady turn is
treated both in the very general case and also in the particular case
when the polar curve can be approximated by a parabola.

Once the general solution has been obtained, some typical maneuvers
are next studied such as, the turn of maximum bank, of maximum angular
velocity, and of minimum radius of curvature.

After a brief comparison is made between the turning characteristics
of conventional airplanes and jet airplanes, and after the effect of
compressibility upon the turn is examined, the effects of the salient
aerodynamic and structural parameters upon the behavior of the plane in
curvilineay flight are summarized in the conclusions.

SYMBOLS
a velocity of sound at the altitude Z, m/sec
Cp 1ift coefficient
Cpe 1lift coefficient corresponding to the condition of maximum

lift-to-drag ratio
Cp . 1lift coefficient denoting the upper limit of the range within
lim which it is permissible to approximate the experimental
values by means of a parabolic ;- lar

C maximum 1ift coefficient
Pmax

*"La Virata Corretta Stazionaria Degli Aeroplani Azionati da
Turboreattori.” Rivista Aeronsutica, vol. 27, no. 1, 1951, pp. 23-35.
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drag coefficient
drag coefficient corresponding to the stall angle

drag coefficient corresponding to the condition of maximum
lift-to-drag ratio

minimum drag coefficient

airplane efficiency factor

lift-to-drag ratio

maximum 1ift-to-drag ratio

centrifugal force, kg

acceleration due to gravity, 9.807 m./sec2
ratio of specific heats, 1.4 for air

Mach number at altitude 2

Mach number at sea level

Mach number corresponding to the tropopause
load factor, P/Q

atmospheric pressure at the altitude Z, kg/m2
1ift, kg

veight of the airplane, kg

radius of turn

aerodynamic drag, kg

wing area, me

ratio between the effective thrust and the minimum thrust
required for straight and level steady flight, T/Tpi,

thrust at altitude Z, kg

minimum thrust required for steady horizontal flight, Q/Emax: kg
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thrust at sea level, kg
thrust existing at the tropopause, kg
velocity, m/sec

velocity of straight horizontal flight at maximum lift-to-drag
ratio, m/sec

stalling speed in straight horizontal flight, m/sec

ratio between the effective coefficient of 1lift and the
coefficient of 1ift corresponding to the maximum lift-to-
drag ratio, CP/CPe

angle of incidence

angle of attack corresponding to the condition of maximum
lift-to-drag ratio

slope of the plane's path

geometric aspect ratio of the wing

absolute density of the air at the altitude Z, kg sec? m'h

relative density of the air at the altitude Z

relative density of the air at the tropopause

absolute temperature of the air at an altitude Z, K

lateral inclination (bank) angle, angle between the plane of
symmetry of the airplane and the vertical plane containing
the tangent to the plane's path

angle of yaw

angular velocity, V/r, sec™’

1. GENERAL CONSIDERATIONS

It is well known that the most general type of uniform flight of an

airplane is a helical motion with respect to the vertical axis, executed
at constant velocity and constant angular velocity.
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It is also known that, for given operating conditions of the pro-
pulsion mechanism and for an ideal atmosphere of constant density, there
exist an infinite number of possible helical motions each being defined
by three independent parameters. Each one of these quantities is deter-
mined if three of the independent parameters which characterize the
motion are assigned (naturally, they must be selected within the limits
of physical possibilities for flight).

A particular case of helical flight is the properly banked turn at
a constant altitude.

The assumption that such a maneuver is to be executed at a constant
altitude is equivalent to fixing one of the three independent parameters
of the helical motion, because the angle of inclination that the tangent
to the flight path makes with respect to the horizontal plane must
vanish (6 = 0).

The other hypothesis, that the airplane should be properly banked,
is equivalent to supposing that the vector representing the velocity of
the center of gravity lies entirely within the plane of symmetry of the
airplane. Consequently, the angle of yaw vanishes (v = 0).

To have fixed right at the start two of the three independent
parameters which determine the helical motion of the airplane implies
that, for a given regime of operation of the turbojet, the airplane can
execute an infinite number of single parameter properly-banked horizontal
turns, whose characteristics will be single-valued functions of the
angle of bank or of the load factor.

2. EQUATIONS OF MOTION OF THE CENTER OF GRAVITY

The general vectorial condition for equilibrium of the forces acting
during a steady, properly-banked turn may be written as:

-» » > > -
T+R+P+Q+F, =0 (1)

Equation (1) is equivalent to three scalar equations, which are
materially simplified in the case where we use, as coordinate axes, the
principle axes of the flight path (the tangent, the principal normal,
and the binormal to the flight path). 1In fact, upon projection of
equation (l) upon the three above-mentioned axes, we obtain:

T-R=0 (2)
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Fo - P sing =0 (3)
Q-Pcosgp=0 (%)
These preceding equations are transformed into the following
expressions when the well-known relationships for the 1ift, the drag,
and the centrifugal force are utilized:
T - -é-crpsv2 =0 (5)
QVve 1 2
S - = CpeSVsin @ = 0 (6)
gr 2
Q - L cpSvPeos @ = 0 (7
2 P ®=

As is easily seen, the drag 1s balanced by the propulsive action
of the turbojet, while the 1lift directly opposes the vector sum of the
centrifugal force and the weight.

The aerodynamic coefficients which appear in equations (5), (6), and
(7) are not independent from one another, but they are linked together
through the drag polar. For the case of incompressible flow, this
connection is then

Cr = Cx(Cp) (8)
. or
c.2
Cp = Cry + ;%; (9)

according to whether one works with an experimental polar or with an
assumed parabola.

At large angles of attack, it is indispensable to base the work on
equation (8), it being taken for granted that the parabolic polar, by
its very nature, will not be of proper shape to match the entire experi-
mental curve. )
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The thrust of the turbojet, for a given r.p.m. and for a selected
altitude, is a function of the velocity. On that account, it is true
that

T = T(V) (10)

It is necessary to note, however, that very often, especially in
order to perform rapid design calculations, it is legitimate to neglect
the dependence and to consider the propulsive action to be constant.

Tt is important to observe that equations (5), (6), (7), (10) and
the equation of the polar constitute a system of 5 equations in six
variables:

D’ Cp, V, T, r, @ (11)

The solution is possible if one selects as given, any one of the
parameters (11) whatsoever. This fact confirms what was said in the
preceding paragraph about the existence of a single infinity of possible
turns.

In addition to the quantities already mentioned, the load factor
and the angular velocity are of interest; they are expressed, respectively,
by: :

(12)

(13)

Hil< O1|

3. SOLUTION OF THE TURN-EQUATIONS FOR THE CASE OF A NONPARABOLIC POLAR

It is particularly convenient, as far as carrying out the calculations
in a practical case is concerned, to select the velocity as the funda-
mental variable, especially if the propulsive action depends on this
parameter.

If it is legitimate to make the assumption instead that

Of ~ ‘
5 = 0 (1)

it is convenient to employ the angle of attack as independent variable,
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The procedure which is best to adopt in the most general case is as
follows:

A. For a given velocity, one derives the corresponding thrust from
equation (10); that is, from the operation charts of the turbojet.

B. The quantities V and T now being known, equation (5) allows
us to find the drag coefficient

oy = 2L (15)

pSV2

C. From the airplane's polar, one may easily obtain that

Cp = £(Cr) (16)
_p.¢
E=2- -C-E (17)

D. By means of equations (2), (12), and (17), one deduces the
expression for the load factor

(18)

old

E. The bank angle is determined through use of equations (4) and (12)

- 1.
¢ = arc cos = = arc cos %E- (19)

or also, recalling a simple trigonometric relationship, it is obtained

from
|[" TE\2
@ = arc tan |/n2 - 1 = arc tan (a- -1 (20)

F. The radius of curvature of the turn is found by use of equa-
tions (6) and (7) as:

Ve

= — 21
g ten @ ( )

r



8 NACA T™ 1382

and this expression, when transformed on the basis of the relationships
given as equations (15), (17) and (20) becomes:

T = 29 (22)
o o - G

G. The angular velocity can be calculated easily from equations (13)
and (21) through use of the expression:

-gtan @ tf;n (23)

which, upon utilization of the equations (15), (17) and (20) produces:

- P_S_Eﬁ_.@c
w_g/;\/;cr m r (24)

The preceding explicit formulae show that for each given velocity
and for each given lift coefficient, there exists a corresponding turn.
Such flight degenerates, as a particular case, to the condition of
straight-line motion at a constant altitude if it so happens that

r = o« (25)

that is, if it happens that
E = EB _9 (26)
Cr T

according to equations (20) and (21).

There exist two values of the angle of attack which satisfy equa-~
tion (26). Let us denote these values by the symbols o) &and a,. The
steady turn at a constant altitude and with a finite radius of curvature is
possible only when the angle of attack lies between these values, or
provided

0 < o< ay (1)
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4. TYPICAL FEATURES OF A TURN IN THE CASE OF A NONPARABOLIC POLAR

Out of the totality of 1lift coefficients which satisfy equation (27),

it is instructive to study those which bring about some particular kinds
of turn, that is,

A. A turn with maximum bank.
B. A turn with maximum angular velocity.
C. A turn with minimum radius of curvature.

For the purpose of simplifying the derivation of the formulae, let
us introduce two convenient parameters:

A. The straight and level flight velocity for maximum lift-to-drag
ratio, which is
Ve = .CE—QS (28)
PeP

B. The ratio between the effective thrust and the minimum thrust
required for straight and level steady flight, which is

(29)

k.1l. Maximum-Bank Turn

Let us assume that relationship (lh) is acceptable. Then as can be

seen from examination of equation (19) or of equation (20), the condition
that

P = Ppax (30)

is satisfied when the attitude of flight is that for maximum lift-to-drag
ratio, that is, for the case where

E = Epay (51)
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In such a case as this, the quantities V, n, ¢, w, r take on
the values, respectively, of

V= Ve [t (32)

n=t (33)

tan @ = \Jt€ - 1 (34)

® = % 6 -3 (35)

r = _.__-_Ve2 (36)
g\l - %2

These relationships follow directly from the equations (15), (17), (18),
(20), (22), (24), (28), (29) and (31).

For large values of the load factor (at low altitude, sizeable

values of the thrust permit such large values of the load factor), i.e.,
in the case where

1«1
> (37)

equations (34), (35), and (36) produce the approximate formulae given
below, respectively:

~ arc tan t (38)

RS
12

wg%ﬁ (39)

2
Ve~ (L40)
g

T

1M
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It is worthy of note, particularly, that the radius of the turn
under the condition of maximum bank angle is identical, under the
assumption made in equation (37), with twice the value of the kinematic
height corresponding to the velocity of a straight and level flight made
in the attitude of maximum lift-to-drag ratio.

4.2, Maximum-Angular-Velocity Turn

Expression (24) shows that this maximum angular velocity turn occurs
when the function

2
20ep) S 2 -2 (1)

becomes a maximum.

In the case where it is legitimate to take the thrust to be independent
of the velocity, it is easy to see that the maximum of equation (1),
taking into account the relationship (18), is obtained for that particular
value of the lift coefficient which satisfies the relationship

d'CP - 92.1 + n2 (k2)
ac, Cy 2n2

Because, for n > 1, it is true that

1+102 <1 (43)

- o~
2n2

one may deduce that the angle of attack which gives maximum angular
velocity is one such that Cp 2z CPe'

In the case where the load factor is of such magnitude that the
condition expressed by equation (37) can be considered acceptable, the
relation given as equation (42) produces the approximation

a
|$
M
r?

C

= (4h)

ol

H
o
Q

H
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which corresponds to the condition that one obtains a maximum for the
functionl

| £(Cp) = —2— = E \Cr (45)

=

By means of equations (18), (24), and (37), one can then derive the
approximate expression for the maximum angular velocity as

e [

4.3, Minimum-Radius-of-Curvature Turn

It is evident from equation (22) that the turn at minimum radius
should be executed by use of an angle of attack which corresponds to the
condition for which

£(0p) = 05 - (3 ©)° (1)

is a maximum.

The thrust being assumed independent of the velocity, and thus also

independent of the attitude, it follows that the maximum of equation (a7,

upon taking into account the relatiomship adduced as equation (18), will
be attained for that particular value of the lift coefficient which
satisfies the relation

dCp Cp 1
—_— = = 48
dCy Cp n2 (48)

1Tn general, such a maximum exists on the real polar, and it is
always situated, as is easily verified, in that region of the airplane's
polar for which equation (9) is not applicable.
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Since, for the case n > 1, we have

1< (49)
nl

the proof is provided that the angle of attack for minimum radius of
curvature is located in that regiom of the polar which corresponds to
angles of incidence which are greater than the one for maximum lift-to-
drag ratio.

As the value of T becomes larger, the angle of attack for minimum
radius is displaced continuously towards the region of high incidences
on the polar, thus continually approaching the stall angle.

So that, an approximate formula for calculation of the minimum

radius of curvature, which is valid above all at low altitude and for
sizeable values of the thrust, is:

Tmin = 2 > (50)
pgs \/Cp 2 . (—% Crc>

If, then, hypothesis (37) is satisfied, equation (50) produces,
as a further simplification:

o 2Q =Vmin (51)

pgSCp v g

Tmin

In other words, the minimum radius coincides approximately with the
value of twice the kinematic height corresponding to the velocity at the
stall for the airplane in straight and level flight.

It is also worthy of note that the velocity for minimum radius of
turn (VA) is always less than the velocity for maximum angular velocity

turn (Vg). (See fig. 1).

In fact, the condition that r = rpy, 1is obtained when the angle

of inclination, a, of a straight line drawn through the origin of the
coordinate system and any point on the curve representing the function
w = £f(V) takes on its maximum value (when it is tangent to the curve).



1L NACA TM 1382

Consequently, the ratio of lift to drag of the airplane flying so .
as to execute a minimum radius curve is less than the ratio of 1lift to
drag which it exhibits during flight at wp,.3 and thus, also, the same
maey be said in regard to the load factor, through use of equation (18).

From this, it follows that the assumption (57) is closer to what
really occurs during a flight with maximum angular velocity, and for
that reason, the approximation inherent in equation (46) is without
doubt better than the approximation made in equation (51).2

Finally, one cannot help but make mention of the fact that scrutiny
of equation (51) suggests the idea of improving the tightness of the
turn by use of high 1lift devices.

Because of the approximations imposed in the derivation of such a
formula one cannot be absolutely certain of such a statement. But it
is necessary to examine ad hoc how the changes of the aerodynamic polar,
attendant to the use of flaps, influence the maxima obtained from
equations (41) and (47).

4.4. Comparison Between the Attitudes for Best Turn With Reciprocating
Engine Propulsion and Those Conditions Giving Optimum
Turns With Jet Propulsion

In the case of propulsion by reciprocating engines, provided it is
assumed that the propeller efficiency is constant with variation in
velocity, and that thus, the thrust decreases inversely with an increase
in V, the optimum attitudes will be attained when the following condi-
tions are satisfied.

A. Maximum-bank turn:
C
_=.32__R (52)

B. Maximum-angular-velocity turn:

d C 2
_CP.=§_P._1+_121 . (53)
r 5Cr 2n

2In all events, especially for low altitudes and sizeable values of
the thrust, it is found that equation (51) can be utilized for the rapid
estimation of the minimum radius turn, with a degree of accuracy which,
on the average, will be within the limits of 10 to 15 percent of the .

correct result.
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C. Minimum-radius-of-curvature turn:

de_QCp 1
E‘Sé:;z (54)

Thus, it may be concluded that:

A, For propulsion by means of reciprocating engines, the attitude of
the plane which produces the turn of maximum bank angle is identical with
that attitude at which maximum endurance is obtained: (E Vég)max.

B. The attitude for attaining the turn with maximum angular velocity
and the one holding for the condition of minimum radius of curvature
(reciprocating engine installation) are at higher incidence than that
for maximum endurance.

C. When the ratio of thrust/weight is the same, the attitudes which
are optimum for the case of reciprocating engine installations are always
at higher incidences than the attitudes for optimum turn performance for
the Jet propulsion installation.

4.5. Numerical Example

For the purpose of making more clear the nature of the considerations
evolved above, the characteristics of a turning Jet-propelled airplane
have been calculated on the basis of the following data:

Q = 5000 kg A=5
S = 25 sq. meters e = 0.8
Cry = 0.018 . T, = 2100 kg

In figure 2, the aerodynamic characteristics of the airplane are
depicted.

In this graph, the following functions are illustrated: E = fl(Cp);

- \Cr - , 1% : _
E = \[Cr = £(Cp); E T T £5(Cp); besides Cp = £(Cp).

In figure 3, the following quantities are shown diagramatically:

(1) The function w = £(2,V)
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(2) The curves which are the loci of the points in the (w,V)-plane,
corresponding to the conditions of wp,y, CPmax’ and E VE; .

In figure 4, the following quantities are graphed:
(1) The function r = £(Z,V).

(2) The curves which are the loci of the points in the (r,V)-glane
corresponding to the condition of rpi, and Cp .

Finally, in figure 5 are depicted, as functions of the altitude, the
minimum radius of turn, the maximum angular velocity, and the maximum
angle of bank. As is easily seen, the minimum radius of turn increases

as the altitude increases, while wpay and @, diminish as Z increases.

5. SOLUTION OF THE EQUATIONS FOR THE TURN IN THE CASE OF A PARABOLIC POLAR

If the polar of the airplane is expressible in parabolic form, the
use of the graphico-numerical method can be avoided, because it is then
possible to deal with a purely analytic procedure:

Let us denote the following quantities by

CPe = VﬂkeCro (55)

Cr_ = 20rg (56)
Epax = || 228 (57)
LCrq,

They are the aerodynamic coefficients which define the condition of
maximum lift-to-drag ratio. Besides, let us introduce the quantity

c
x = £ (58)
Cp,

which is the ratio between the 1lift coefficient experienced in any flight
and the lift coefficient which corresponds to the condition of maximum
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lift-to-drag ratio. The polar of the airplane, as given in equation (9),
takes on the new formulation

Cr = Cro(1 + x°) (59)

while the other parameters characterizing the turn, turn out to be

V= Vo |—8— = (60)
1+ X
E = 2% Ema, (61)
> X
1+ x
n = 2tx 5 (62)
1+ x
2
tan ¢ =, [[-2¥_\ -1 (63)
1+ x2
oo £ |2 1+ (64)
Ve 1, 2 2t
2
r= Ve - (65)
/-
gy @ - (122)
2t /

when the original expressions of equations (15), (17), (18), (20), (22),
and (24) are transformed by aid of equations (28), (29), (55), (56), (57),
(58) and (59).

6. CHARACTERISTIC FEATURES OF A TURN IN THE CASE OF A PARABOLIC POLAR

Upon assuming that equation (14) is true, it is now desired that the
values of the lift coefficient be deduced which will produce the maximum
values for ¢, w, and a minimum value for r, respectively.
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Simple manipulations of equations (63), (64), and (65) show that the
desired conditions are realized for

(g =1 (66)
(Xaopay = 28 - 1 (67)
(K)p  =\2t% -1 (68)

respectively.

As is easily seen, although the angle of attack for obtaining the
turn with maximum bank is determined by factors which are solely aero-
dynamic, the angle of attack for flight at maximum angular velocity and
with minimum radius of curvature each depend upon the thrust/weight

ratio in addition. For that matter, this was already demonstrated in
section k4.

Upon combining in order the expressions given as equations (65),
(64) and (65) with the relationships (66), (67) and (68), one gets:

cpmax = arc tan t2 -1 (69)
Wmax = f— 2(t - 1) (70)
e
2
v
Tpip = ———— (71)
g\t - 1

With regard to the use of equations (70) and (71), it is necessary
to take heed that the said formulae are subject to restrictions. In fact,
it is necessary to make sure by checking, whether the corresponding 1lift
coefficients are below the finite limit of the 1ift coefficient up

through which value the parabolic polar sticks closely to the experimental
one. :

Thus, it is necessary that

(Cplgy . = |mheCr (2t - 1) S Cp . (72)
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and

2
(Cplrys, = VTO\eCrO(Qt - 1) S Cpyy (73)

be true.

If such inequalities are not satisfied, the formulae just written
above lose their validity, and it is necessary to have recourse to the
graphico-numerical procedures described in sections 3 and 4. From
equations (72) and (73), it is easy to deduce that equations (70) and (TL1)
become closer to actuality as t becomes smaller, and thus, for a given
airplane and for a given r.p.m. of the turbine, they become closer to
actuality as flight is made close to the absolute ceiling.

The theoretical absolute ceiling corresponds to the conditions:

t =1
Pmax = O
(74)
Oy = 0
Tmin = ©

Again, in the case of a parabolic polar, the results are compiled
into table T, wherein will be found described the following:

(1) The general formulae for a turn
(2) The formulae which apply to special cases of cufvilinear flight

(3) The formulae which are connected with the case of straight and
level flight, both with a given thrust, and with a minimum thrust.

On the other hand, the charts (6), (7), (8), (9), (10) and (11) are

graphs for the three special cases of turn in which examination is made
of the quantities:

X, =— 1n, QP ——, -——

as functions solely of "t", the ratio between the effective thrust and
the minimum thrust necessary for steady straight and level flight.
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7. THE EFFECT OF COMPRESSIBILITY ON THE TURN

As is indicated in table I, the velocities at which wpzy and rpip

are attained in a turn increase as the altitude increases, while the
corresponding angle of attack decreases when Z 1increases.

One deduces, therefore, that for a given kind of turn, whether we
consider the Mach number of flight or if we mean the critical Mach number
associated with the 1ift coefficient being employed, they both increase
with increase in altitude, Z2.

The presence of compressibility effects depends, substantially, on
the laws of distribution of the above-mentioned Mach number as a function
of altitude.

Upon assuming the following laws of variation for the thrust, for
a given r.p.m. of the turbine, hold:

(a) For the troposphere: é%-= o0-7 (75)

(b) For the stratosphere: %L = (76)
*

S
Oy
and upon taking into account the formulae of table I and the expression
for the velocity of sound, it is easy to deduce the following relation-
ships for the Mach number of flight:

A. The turn with maximum angle of bank

In the troposphere: M 0-0'267 (77)
Mo
In the stratosphere: M_, (78)
My
B. The turn with maximum angular velocity
In the troposphere: ﬁ% = g~0-617 (79)

In the stratosphere: M ="Ei (80)
M* g
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C. The turn with minimum radius of curvature

In the troposphere: ﬁ% = ¢=0.967 (81)
o

In the stratosphere: XL = =X (82)
My o

In each case, if there are effects of compressibility operating,
the procedure to use is the following:

(1) At an assigned altitude and for a given value of the velocity,
the thrust is determined (where T = T(V,Z)) from the graphs of the

rerformance charts of the jet engine, and the Mach number of flight is
obtained from

Mm=Yxo.05 X (83)

(2) The drag coefficient is calculated from the relation

Cp = 2T; __er . (84)
pSV KpSM

(3) From the graph of the aerodynamic characteristics of the air-
plane, one determines the lift coefficient

Cp = £(Cp,M) (85)

(h) Once the lift-to-drag ratio, E, has been calculated, the
quantities n, ¢, r, and o are found by means of equations (18), (20),
(21) ana (13).

In general, one can predict that

A. The effects of compressibility are more likely to appear in the
cases of turn under study, for airplanes with high wing loading, low
value of minimum drag, and for small aspect ratio.

B. Upon taking into consideration that, for a given value of the
1ift coefficient, the compressibility effects manifest themselves by an
increase in the drag coefficient, it follows that they decrease the
maxima of the functions given by equations (17), (41) and (47).
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Compressibility effects act, therefore, in a disadvantageous way
upon the characteristics of the turn: they induce a decrease in the
maximum bank angle and in the maximum angular velocity, and besides,
they produce an increase in the minimum radius of curvature.

8. CONCLUSIONS

The study of a jet-propelled airplane held in a steady properly-
banked turn, turns out to be more simple than the analogous study in the
case of a conventionally-powered airplane. This is so because the
assumption is made that the thrust is independent of the velocity, which
permits a great simplification in the calculations, particularly in the
case where the polar is to be described by means of a parabola.

The most significant deductions can be condensed into the following
outline:

1. The characteristic quantities describing the properly-banked
turn are single-valued functions of the angle of attack, or what is the
same thing, double valued functions of the angle of bank.

2. Of the two turns which are generally possible at a glven angle
of bank, one belongs to the initial region of the polar (a € ae) while
the other belongs to the region of high angles of attack (a aes. The
second is the region which produces the cases of a turn at smallest
radii of curvature and at largest angular velocities.

3. There exist three special angles of attack which correspond,
respectively, to the conditions of turns at @p.., at @p. and at rpy.-

These angles of attack are characterized by the inequalities:

Ge = (@ g S @y S @y (86)

4. The attitude for the turn at maximum angle of bank depends solely
upon the aerodynamic characteristics of the airplane. On the contrary,
the angles of incidence which characterize the turns at maximum angular
velocity and with minimum radius of curvature depend, in addition, upon
the ratio of thrust to weight.

5. The turn at maximum angle of bank is the one which produces the
most structural stress upon the framework. The turns made at maximum
angular velocity and at minimum radius of curvature produce load factors
which are less, in that order.
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6. For very large values of T/Q, the attitude giving the turn with
maximum angular velocity, wpygy, OCCurs in close neighborhood to the

condition corresponding to the maximum of the function,

£(Cp) =E \[Cy

while the attitude giving the turn with minimum radius, rp;,, becomes

established when flying approximately with an angle of incidence which
is equal to the stall angle.

T. The bank angle and the maximum angular velocity increase with
an increase of the thrust and of the aspect ratio, and with a decrease
in the minimum value of the drag coefficient and of the wing loading.

8. The minimum radius of turn diminishes as T and A increase,

and with a diminution in Cro, and g.

9. The maximum bank angle and the maximum angular velocity decrease,
for a given operating condition of the propulsion mechanism, with an
increase in the flight altitude, finally vanishing in correspondence
with flight at the absolute ceiling. The minimum radius of curvature,
on the contrary, increases as Z increases, and tends gradually to an
infinitely large value as the airplane approaches the absolute ceiling.

10. At a given ratio between the thrust and weight, the optimum
angles of attack for turns with jet propulsion installations are always
less than the ones made with reciprocating engine installations. These
latter attitudes of flight, by the same token, belong to that region of
the polar characterized by angles of incidence which are equal to or
larger than the one for best endurance.

11. In connection with the effect of flaps on the characteristics of
the turn, it does not appear to be a good idea to draw any conclusions
of a general nature, but, taking each case on its own merits in view of
the changes effected in the polar by the use of these devices, it is
worth examining the advantages to be obtained from their use.

12. The compressibility effect, when present, acts in such a way
as to be disadvantageous, insofar as the characteristics of the turn are
concerned, since it produces an increase in the minimum radius of
curvature, a diminution in the maximum angular velocity, and in the
maximum bank angle.

Translated by R. H. Cramer
Cornell Aeronautical Laboratory, Inc.
Buffalo, New York
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Figure 1.- Graphical determination of the velocity corresponding to the
turn made with minimum radius.
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Figure 2.- DPolar for the lower velocity range applying to a jet-propelled
airplane.
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Figure 3.- The angular velocity with which a turn is executed, given as
a function of the velocity maintained during the maneuver and of the
altitude of flight.
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Figure 4.- The radius of turn, given as a function of the velocity
maintained during the maneuver and the altitude of flight.
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Figure 5.- Typical variation with altitude of the maximum angular
velocity, the maximum angle of bank, and the minimum radius of
curvature.
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Figure 6.- Lift coefficients pertaining to some special cases of turn.
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Figure 7,- Velocity maintained during the maneuver for some special
cases of turn.
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Figure 9.- Angle-of-bank in some special cases of turn.
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Figure 10.- Angular velocity in some special cases of turn.
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Figure 11.- Radius-of-curvature in some special cases of turn.
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